home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The X-Philes (2nd Revision)
/
The X-Philes Number 1 (1995).iso
/
xphiles
/
hp48_1
/
analemma
< prev
next >
Wrap
Internet Message Format
|
1995-03-31
|
21KB
From: Craig A. Finseth <fin@unet.umn.edu>
Subject: v04i001: analemma_cf - Analemma v1.0, Part01/01
Newsgroups: comp.sources.hp48
Organization: University of Minnesota, Networking Services.
Followup-To: comp.sys.hp48
Approved: spell@seq.uncwil.edu
Checksum: 1531207743 (verify with brik -cv)
Submitted-by: Craig A. Finseth <fin@unet.umn.edu>
Posting-number: Volume 4, Issue 1
Archive-name: analemma_cf/part01
BEGIN_DOC analemma.doc
Craig A. Finseth fin@unet.umn.edu
1343 Lafond Craig.Finseth@nic.mr.net
St Paul MN 55104-2437 +1 612 644 4027
USA
When: 14 January 1992
What it does:
Many globes show a large "figure 8" somewhere over the Pacific Ocean.
(Oddly, this figure does not show on photographs taken from space...)
This figure is called an "analemma," and it shows the position of the
Sun (in degrees of declination and minutes of right ascention (that
is, minutes as in "hours and minutes" not "degrees and minutes"))
relative to "where it is supposed to be."
For example, on May 14, the Sun is about 3 minutes and 41 seconds
ahead of nominal and about 20 degrees north of the ecliptic.
I said "many globes" because some manufacturers are removing this
useful piece of information from their globes. This program makes up
for this loss (as well as providing an excuse to write a program).
This program uses the graphics capabilities of the 48S/48SX to draw an
analemma for the year 2000.
The equations used are from:
Meeus, Jean (1991) Astronomical Algorithms. Richmond,
Virginia: Willmann-Bell. ISBN 0-943396-35-2.
In many cases, the definitions for the functions in this program give
equation numbers from this text.
Note: the shape on an analemma varies over time. Also, an analemma is
*not* symmetric about the origin along either axis.
------------------------------------------------------------
Basic Operation:
Execute "GO". Wait and watch.
When complete, you can enter the graphics environment and use the
cursor and COORD to identify the position in decimal minutes of right
ascention and degrees of declination.
The program operates in four phases:
1) Clear the screen and draw the grid (declination lines of -20, -10,
0, 10, and 20 degrees and a right ascention line of 0 degrees).
2) Draw the analemma curve. Points are calculated every five days and
a line is drawn connecting the points.
3) Draw the tick marks. These are drawn the first of every month and
21 Mar, 20 Jun, 21 Sep, and 20 Dec. February is assumed to have 28
days.
4) Draw the labels.
The program objects all communicate via global variables. Each
program uses those globals that it needs and stores its result in its
own global variable.
Because of these dependencies, the programs must be executed in the
following order:
FIGJD
FIGT
FIG\GD
FIG\Ge
FIGL0 anytime after FIGT
FIG\Ga
FIGE
FIG\Gd anytime after FIGT
While FIGL0 may be computed anytime after FIGT, FIG\Ga and FIGE
(indirectly) must be computed after FIGL0.
As it turned out, this structure made it very easy to test the
modules. A test Julian Day could be stored in JD, then the other
program calculated and their results examined.
The programs can, of course, be used separately.
------------------------------------------------------------
Accuracy:
The program calculates the analemma for the year 2000. While the
analemma does vary over time, the variation is not much and the
displayed shape wouldn't change for a couple of centuries on each side
of the target year.
Most of the programs assume this range of time. Higher-order terms
are not included in the programs, but could be added with minimal
effort.
The horizontal axis is "magnified" by a factor of four. If you wish
to change this magnification, you will need to edit:
PPAR to set new limits
FRAME to set horizontal endpoints
LBL to position the labels
If you don't care about the lines and labels, you can drop the
invocations from GO and simply edit PPAR. Then replot.
Internal computations are all performed in decimal degrees. Where a
computation may result in a number of degrees significantly in excess
of 360, the value is taken mod 360 before being stored.
------------------------------------------------------------
Object Summary:
GO runs the program
BASE computes the basic analemma
E global variable: result variable for the equation of time
FIGE computes E
FIGJD computes the Julian Day
FIGL0 computes L0
FIGT computes T
FIG\Ga computes \Ga
FIG\GD computes \GD\Ge and \GDp
FIG\Gd computes \Gd
FIG\Ge computes \Ge
FRAME displays the frame
JD global variable: current Julian Day
L0 global variable: longitude of the Sun
LBL displays the month labels
PLACE computes the coordinates for a day
PPAR global variable: plotting parameters
T global variable: current Julian Century
TICK places month tick marks
\Ga global variable: apparent Solar right ascention
\GD\Ge global variable: nutation in obliquity
\GDp global variable: nutation in longitude (p should be psi)
\Gd global variable: Solar declination
\Ge global variable: obliquity of the ecliptic
------------------------------------------------------------
Detailed Interfaces:
GO Stack Input: none
Stack Output: none
Global Input: none
Global Output: none
Calls: BASE, FRAME, LBL, TICK
Saves the flags, sets degrees mode, clears and displays the
PICT, draws the figure, restores the flags.
BASE Stack Input: none
Stack Output: none
Global Input: none
Global Output: none
Calls: PLACE
Plots the basic analemma.
FIGE Stack Input: none
Stack Output: none
Global Input: L0, \Ga, \GDp, \Ge
Global Output: E
Calls: none
Computes the equation of time (equation 27.1).
FIGJD Stack Input: day number within year (21 Mar = 0)
Stack Output: none
Global Input: none
Global Output: JD
Calls: none
Computes the Julian Day
FIGL0 Stack Input: none
Stack Output: none
Global Input: T
Global Output: L0
Calls: none
Computes the Sun's mean longitude (equation 27.2).
FIGT Stack Input: none
Stack Output: none
Global Input: JD
Global Output: T
Calls: none
Computes the Julian Century (equation 21.1). The origin is
1 Jan 2000.
FIG\Ga Stack Input: none
Stack Output: none
Global Input: L0, T, \Ge
Global Output: \Ga
Calls: none
Computes the *apparent* Solar right ascention (equations 24.3,
both unnumbered between 24.4 and 24.5 ("OD" refers to the
circle with dot varaible), first two unnumbered between 24.5
and 24.6, 24.6, and 24.8).
FIG\GD Stack Input: none
Stack Output: none
Global Input: T
Global Output: \GD\Ge, \GDp
Calls: none
Computes the nutation in longitude (\GDp, p should be psi) and
nutation in obliquity (\Ge) (the accuracy of 0.5 minutes
equations on page 132).
FIG\Gd Stack Input: none
Stack Output: none
Global Input: T, \Ge
Global Output: \Gd
Calls: none
Computes the Solar declination. Uses simple first order
approximation.
FIG\Ge Stack Input: none
Stack Output: none
Global Input: T
Global Output: \Ge
Calls: none
Computes the mean obliquity of the ecliptic (equation 21.1).
FRAME Stack Input: none
Stack Output: none
Global Input: none
Global Output: none
Calls: none
Plots the lines of declination (-20, -10, 0, 10, and 20
degrees) and right ascention (0).
LBL Stack Input: none
Stack Output: none
Global Input: none
Global Output: none
Calls: none
Plots the month name labels.
PLACE Stack Input: day number within year (21 Mar = 0)
Stack Output: complex coordinate of analemma point for that day
Global Input: E, \Gd
Global Output: none
Calls: FIGE, FIGJD, FIGL0, FIGT, FIG\Ga, FIG\GD
FIG\Gd, FIG\Ge
computes the coordinates for a day
TICK Stack Input: none
Stack Output: none
Global Input: none
Global Output: none
Calls: PLACE
Plots the tick marks for the first of every month and 21 Mar,
20 Jun, 21 Sep, and 20 Dec.
END_DOC
Checksum: #c6deh
Size: 2859.5
------------------------------------------------------------
BEGIN_RPL analemma.rpl
%%HP: T(3)A(D)F(.);
DIR
GO
\<< RCLF DEG
ERASE { # 0h # 0h }
PVIEW FRAME BASE
TICK LBL 7 FREEZE
STOF
\>>
BASE
\<< 0 PLACE 0 365
FOR d d PLACE
DUP ROT LINE 5
STEP DROP
\>>
E -3.19866112964
FIGE
\<< L0 .0057183 -
\Ga - \GDp \Ge COS * +
'E' STO
\>>
FIGJD
\<< 78 +
2451545.5 + 'JD'
STO
\>>
FIGL0
\<< T 10 / \-> \Gt
\<< 280.4664567
360007.698278 \Gt * +
.03032028 \Gt SQ * +
360 MOD 'L0' STO
\>>
\>>
FIGT
\<< JD 2451545 -
36525 / 'T' STO
\>>
FIG\Ga
\<< 357.5291
35999.0503 T * +
360 MOD \-> M
\<< 1.9146
.004817 T * -
.000014 T SQ * - M
SIN * .019993
.000101 T * - M 2 *
SIN * + .00029 M 3
* SIN * + L0 + \-> OD
\<< 125.04
1934.136 T * - 360
MOD \-> \GW
\<< OD
.00569 - .00478 \GW
SIN * - \-> \Gl
\<< \Ge
.00256 \GW COS * +
COS \Gl SIN * \Gl COS
SWAP R\->C ARG 360 +
360 MOD
\>>
\>>
\>>
\>> '\Ga' STO
\>>
FIG\GD
\<< 125.04452
1934.136261 T * -
360 MOD 280.4665
36000.7698 T * +
360 MOD 218.3165
481267.8813 T * +
360 MOD \-> \GW L LP
\<< -.00172
HMS\-> \GW SIN *
.000132 HMS\-> 2 L *
SIN * - .000023
HMS\-> 2 LP * SIN * -
.000021 HMS\-> 2 \GW *
SIN * + '\GDp' STO
.00092 HMS\-> \GW COS *
.000057 HMS\-> L 2 *
COS * + .00001 HMS\->
LP 2 * COS * +
.000009 HMS\-> \GW 2 *
COS * - '\GD\Ge' STO
\>>
\>>
FIG\Gd
\<< T 36525 * 78
- 365 / 360 * 360
MOD SIN \Ge * '\Gd' STO
\>>
FIG\Ge
\<< 23.2621448
HMS\-> .0046815 HMS\->
T * - .000000059
HMS\-> T SQ * - \GD\Ge +
'\Ge' STO
\>>
FRAME
\<< (-51.17,-20)
(51.17,-20) LINE
(-51.17,-10)
(51.17,-10) LINE
(-51.17,0)
(51.17,0) LINE
(-51.17,10)
(51.17,10) LINE
(-51.17,20)
(51.17,20) LINE
(0,-25) (0,25) LINE
\>>
JD 2451967.5
L0 336.902466384
LBL
\<< PICT (-32,1)
"Mar" 2 \->GROB GXOR
PICT (-32,16) "Aug"
2 \->GROB GXOR PICT
(-32,25) "Jul" 1
\->GROB GXOR PICT
(27,25) "Jun" 1
\->GROB GXOR PICT
(27,19) "May" 1
\->GROB GXOR PICT
(27,13) "Apr" 1
\->GROB GXOR PICT
(27,4) "Sep" 2
\->GROB GXOR PICT
(27,-6) "Oct" 2
\->GROB GXOR PICT
(27,-17) "Nov" 1
\->GROB GXOR PICT
(27,-22) "Dec" 1
\->GROB GXOR PICT
(-32,-19) "Jan" 1
\->GROB GXOR PICT
(-32,-9) "Feb" 2
\->GROB GXOR
\>>
PLACE
\<< FIGJD FIGT
FIG\GD FIG\Ge FIGL0
FIG\Ga FIGE FIG\Gd E 4
* \Gd R\->C
\>>
PPAR {
(-51.17,-25)
(51.17,25) X 0
(0,0) PARAMETRIC Y
}
T
1.15674195756E-2
TICK
\<< { 0 10 40 71
91 101 132 163 184
193 224 254 274 285
316 344 } DUP SIZE
\-> d n
\<< 1 n
FOR j d j
GET PLACE PIXOFF
NEXT
\>>
\>>
\Ga 340.091306964
\GD\Ge
-4.10799632761E-4
\GDp
-4.47118519728E-3
\Gd -8.10071364255
\Ge 23.4387298868
END
END_RPL
BEGIN_ASC analemma.asc
%%HP: T(1)A(D)F(.);
"69A20FF75851000000103910339201008688927834320B100010291033920000
5524631700189B100020B90720339207998279158117449D100020B939203392
06991672369970149D100010C810339202004696031900430B100040459434B4
40D9D20E163247A204B2A2339201000000000000010339201000000000000040
3392010000000000001703392010000000000001903392020000000000010103
3920200000000000231033920200000000000361033920200000000000481033
9202000000000003910339202000000000004220339202000000000004520339
2020000000000047203392020000000000058203392020000000000061303392
02000000000004430B213078BF18B9C11C432D6E201046D6E2010E6E16329C2A
2D6E2010E60A132D6E2010A6D6E201046D6E2010A66C7D184E205005C4143454
443E1C4232EF53293632B21303E100104510339208996575914765110B100040
050514254047A207792010000000000711591000000000000529779201000000
000071150100000000000052084E2010854B2A27792000000000000000000000
0000000000001C6E184E201095B21301A0005005C414345450D9D20E163284E2
050649474A44484E20406494744584E2040649474B984E20406494743984E205
0649474C40384E2040649474C884E20406494745484E20406494742984E20105
4803A2EEDA184E201029E97C193632B2130FB00030C424C430D9D20E1632634E
17792010000000000002390000000000000010C2A20B0000D41627ED2A2DA5E1
4E4E1634E17792010000000000002391000000000000610C2A20B0000145776E
D2A2DA5E14E4E1634E17792010000000000002391000000000000520C2A20B00
00A457C69C2A2DA5E14E4E1634E1779201000000000000720100000000000052
0C2A20B0000A457E69C2A2DA5E14E4E1634E1779201000000000000720100000
0000000910C2A20B0000D416979C2A2DA5E14E4E1634E1779201000000000000
7201000000000000310C2A20B00001407279C2A2DA5E14E4E1634E1779201000
0000000007200000000000000040C2A20B0000355607ED2A2DA5E14E4E1634E1
7792010000000000007200000000000000069C2A20B0000F43647ED2A2DA5E14
E4E1634E17792010000000000007201000000000000719C2A20B0000E4F6679C
2A2DA5E14E4E1634E17792010000000000007201000000000000229C2A20B000
04456369C2A2DA5E14E4E1634E17792010000000000002391000000000000919
C2A20B0000A416E69C2A2DA5E14E4E1634E17792010000000000002390000000
000000099C2A20B0000645626ED2A2DA5E14E4E193632B2130A830020C403203
39202004836642096330D100020A44420339206000000576915420D100050642
514D45450D9D20E1632779201000000000071159100000000000002977920100
00000000711501000000000000029893E1779201000000000071159100000000
00000197792010000000000711501000000000000019893E1779201000000000
07115900000000000000007792010000000000711500000000000000000893E1
7792010000000000711591000000000000010779201000000000071150100000
0000000010893E17792010000000000711591000000000000020779201000000
0000711501000000000000020893E17792000000000000000001000000000000
5297792000000000000000001000000000000520893E193632B2130CF1004064
94743940D9D20E1632339201000008441262320E3FB133920799000000051864
0E3FB184E201045EEDA190DA1339202990000000000950E3FB184E201045624B
1EEDA190DA184E2020B93976BA14563284E20103997632DCC0293632B21301C0
00406494742940D9D20E163284E201045339204000000000525630EEDA133920
100000000000087090DA133920200000000000563050FA133920200000000000
0630EEDA1339202000000000000630D4EB1CA4B184E201039EEDA14563284E20
102997632DCC0293632B21306D00040649474B940D9D20E16323392020000002
5440521033920300001626314391084E201045EEDA190DA13392020000000000
00630D4EB133920200000005664082033920400000896700063084E201045EED
A176BA1339202000000000000630D4EB13392020000000561381203392050000
3188762184084E201045EEDA176BA1339202000000000000630D4EB11C432D6E
2010D9D6E2010C4D6E2020C405E1632339207990000000002719E3FB1D6E2010
D9CA4B1EEDA1339206990000000002310E3FB1ED2A2D6E2010C4EEDA1CA4B1EE
DA190DA1339205990000000000320E3FB1ED2A2D6E2020C405EEDA1CA4B1EEDA
190DA1339205990000000000120E3FB1ED2A2D6E2010D9EEDA1CA4B1EEDA176B
A14563284E2020B90797632DCC02339206990000000000290E3FB1D6E2010D95
05B1EEDA1339205990000000000750E3FB1D6E2010C4ED2A2EEDA1505B1EEDA1
76BA1339205990000000000010E3FB1D6E2020C405ED2A2EEDA1505B1EEDA176
BA1339204990000000000090E3FB1D6E2010D9ED2A2EEDA1505B1EEDA190DA14
563284E2020B93997632DCC02EF53293632B2130B430040649474C840D9D20E1
63233920200000001925753033920400000305099953084E201045EEDA176BA1
339202000000000000630D4EB11C432D6E2010D4E16323392000000000006419
1033920799000000007184084E201045EEDA190DA13392059900000000004108
4E201045624B1EEDA190DA1D6E2010D4CA4B1EEDA13392089900000003999103
3920699000000000101084E201045EEDA190DA1D6E2010D4ED2A2EEDA1CA4B1E
EDA176BA1339206990000000000920D6E2010D43F2A2EEDA1CA4B1EEDA176BA1
84E2020C40376BA11C432D6E2020F444E1632339202000000000405210339203
00000006314391084E201045EEDA190DA1339202000000000000630D4EB11C43
2D6E2010D9E1632D6E2020F44433920799000000000965090DA1339207990000
000008740D6E2010D9CA4B1EEDA190DA11C432D6E201069E163284E201039339
207990000000006520D6E2010D9505B1EEDA176BA1505B1D6E201069CA4B1EED
A1D6E201069505B1DBBF1E97C1BD2B133920200000000000063076BA13392020
00000000000630D4EB1EF532EF532EF532EF5324563284E2010C897632DCC029
3632B2130C5300406494744540D9D20E163284E2020A44433920600000005451
542090DA133920400000000052563050FA14563284E20104597632DCC0293632
B21307700050649474C40350D9D20E163284E201045339201000000000000010
50FA11C432D6E201099E16323392020000765466408203392050087289670006
30D6E201099EEDA176BA1339208990000082023030D6E201099624B1EEDA176B
A1339202000000000000630D4EB14563284E2020C40397632DCC02EF53293632
B2130BF00050649474A44450D9D20E163233920100000000000087076BA13392
0600000055451542076BA14563284E2020A44497632DCC0293632B2130070004
06494745440D9D20E163284E2020C40333920799000000038175090DA184E201
0C890DA184E2020B90784E201039505B1EEDA176BA14563284E20105497632DC
C0293632B2130E8000105410339200004692116689139B1000402414355440D9
D20E16324B2A284E205005C41434544B2A23392020000000000056300A132D6E
201046D6E20104684E205005C414345478BF1E0CF1893E1D13A2083328DBF193
632B2130690002074F420D9D20E1632916C1993C1F52E147A20E4A2051000000
0000000000000E4A20510000000000000000000B21300F2E184E2050642514D4
5484E20402414355484E2040459434B484E2030C424C4743A24A5A1F76C19363
2B2130ED6C"
END_ASC
BYTES: #C6DEh 2863.5
BEGIN_UU analemma.uue
begin 644 analemma
M2%!(4#0X+466*O!_A14````!DP$S*1``:(@IAT,CL`$``9(!,RD``%5"-G$`G
M@;D!``*;<`(S*7"9*)=1&'%$V0$``IN3`C,I8)EA)V.9!T'9`0`!C`$S*2``D
M9&DPD0`TL`$`!%1)0TL$G2W@82-T*D`K*C,I$````````!`PDP(!````````G
M!#,I$````````'$PDP(!```````0"3,I(```````$!`PDP("```````R`3,I$
M(```````,!8PDP("``````"$`3,I(```````,!DPDP("```````D`C,I(```4
M````0"4PDP("``````!T`C,I(```````4"@PDP("```````6`S,I(```````3
M0#2P$@.'^X&;',$TTN8"`61M+A#@YF$CR:+2Y@(!;J`QTN8"`6IM+A!`UN8"H
M`6K&UX'D`@503$%#143CP20C_C628R,K,3`>``%4`3,I@)E65QET5A&P`0`$_
M4%!!4@1T*G"7`@$`````<!&5`0``````4))W*1```````!=1$````````"6`-
MY`(!6+2B<I<"`````````````````````,'F@>0"`5DK,1`*``503$%#106=F
M+>!A(T@N4&"4=*1$A.0"!$9)1U1(+D!@E'2TB>0"!$9)1Y-(+E!@E'3$!(/DR
M`@1&24>,2"Y`8)1T5(3D`@1&24>22"X04(0P*NZM@>0"`9*>QY%C(RLQ\`L`4
M`TQ"3`.=+>!A(S;D<9<"`0``````(),``````````2PJL```36%RWJ+26A[DV
MY&%#'G<I$````````#(9````````%L"B`@L`$%1WYBTJK>5!3AXVY'&7`@$`/
M`````""3`0``````4`(L*K```$IU;,FBTEH>Y.1A0QYW*1`````````G$```$
M`````"7`H@(+`*!4YY8L*JWE04X>-N1QEP(!``````!P`@$``````)`!+"JPT
M``!-87G)HM):'N3D84,>=RD0````````)Q`````````3P*(""P`0!">7+"JM9
MY4%.'C;D<9<"`0``````<`(`````````!"PJL```4V5PWJ+26A[DY&%#'G<IV
M$````````"<`````````8,FB`@L`\#1&YRTJK>5!3AXVY'&7`@$``````'`"$
M`0``````<)$L*K```$YO=LFBTEH>Y.1A0QYW*1`````````G$````````"+)\
MH@(+`$!4-I8L*JWE04X>-N1QEP(!```````@DP$``````)"1+"JP``!*86[)+
MHM):'N3D84,>=RD0````````,@D```````"0R:(""P!@5";F+2JMY4%.'CDVX
MLA(#B@,@P`0C,),"`D`X9B20-@,=`""@1"0PDP(&``!09QE%`AT`4&`D%=143
M5-#9`AXV<I<"`0````!P$94!````````DG<I$```````%U$0````````((DYR
M'G<I$```````%U$9````````$'F7`@$`````<!$%`0```````)&8XW&7`@$`'
M````<!&5``````````!W*1```````!=1``````````"`.1YW*1```````!=15
M&0```````!!PEP(!`````'`1!0$````````!F.-QEP(!`````'`1E0$`````U
M```"=RD0```````741`````````@@#D>=RD``````````!`````````E>9<"T
M```````````!``````!0`ICCD6,C*S'`'P`$1DE'DP2=+>!A(S,I$```@$0AA
M)B/@\QLS*7"9````4(%&X/,;2"X00.7>&@FM,9,"D@D`````D`4^OX'D`@%4[
M)K3AWAH)K8'D`@*;DV>K064C2"X0,)EG(\T,DF,C*S$0#``$1DE'D@2=+>!A5
M(T@N$$`UDP($`````"5E`^ZM,9,"`0``````@`<)K3&3`@(``````&4#!:\QT
MDP("``````!@`^ZM,9,"`@``````8`--OL%*&T@N$##IWAI4-H+D`@&2>3;2=
MS"`Y-K(2`]8`0&"4=+1)T-D"'C8RDP("```@100E`3,I,```86(3-!F`Y`(!%
M5.ZMD=`:,RD@````````-M#D&S,I(````%!F!"@PDP($``"8=@!@`T@N$$#E'
MWAIGJS&3`@(``````&`#3;XQDP("````93$8`C,I4```$XAG$DB`Y`(!5.ZM2
M<;8:,RD@````````-M#D&\$TTN8"`9UM+A#`U.8"`DQ0'C8RDP*7"0````!R<
MD3Z_T>8"`9VLM.'>&C,I8)D`````(!/@\QO>HM+F`@%,[JW!2AONK9'0&C,II
M4)D``````"/@\QO>HM+F`@),4.ZMP4H;[JV1T!HS*5"9```````AX/,;WJ+2Z
MY@(!G>ZMP4H;[JUQMAI4-H+D`@*;<'DVTLP@,RE@F0``````DN#S&VTN$-!9+
M4!ONK3&3`I4)`````'`%/K_1Y@(!3-ZBXMX:!;7AWAIGJS&3`I4)```````!S
M/K_1Y@("3%#>HN+>&@6UX=X:9ZLQDP*4"0``````"3Z_T>8"`9W>HN+>&@6U)
MX=X:":U!92-(+B"P.9EG(\T,XE\C.3:R$@-+`T!@E'3$2-#9`AXV,I,"`@``Y
M`)%25P,S*4```#!0D)DU@.0"`53NK7&V&C,I(````````#;0Y!O!--+F`@%-K
M'C8RDP(``````$:1`3,I<)D`````%TB`Y`(!5.ZMD=`:,RE0F0``````%(#DO
M`@%4)K3AWAH)K='F`@%-K+3AWAHS*8"9````,)D9,),"E@D``````0%(+A!`3
MY=X:":W1Y@(!3=ZBXMX:K+3AWAIGJS&3`I8)`````)`";2X0T#0O*NZMP4H;?
M[JUQMAI(+B#`!'.V&L$TTN8"`D]$'C8RDP("``````0E`3,I,````&`3-!F`Y
MY`(!5.ZMD=`:,RD@````````-M#D&\$TTN8"`9T>-M+F`@)/1#,I<)D`````@
MD%:0T!HS*7"9`````(!'T.8"`9VLM.'>&@FM$4PC;2X08.EA(T@N$#`YDP*7J
M"0````!6`FTN$-!94!ONK7&V&@6UT>8"`9:LM.'>&FTN$&!94!N]^^%Y'-NR(
M,9,"`@``````8`-GJS&3`@(``````&`#3;[A7R/^->)?(_XU0F4C2"X0P)AGW
M(\T,DF,C*S'`-0`$1DE'5`2=+>!A(T@N(*!$-),"!@```$4510()K3&3`@0`>
M````)64#!:]!92-(+A!`E6<CS0R28R,K,7`'``5&24=,,`6=+>!A(T@N$$`UC
MDP(!`````````06O$4PC;2X0D.EA(S,I(```9T5F!"@PDP(%@">8=@!@`VTN,
M$)#IWAIGJS&3`I@)```H(`,#;2X0D&E"&^ZM<;8:,RD@````````-M#D&U0VF
M@N0"`DPP>3;2S"#^-9)C(RLQL`\`!49)1TI$!9TMX&$C,RD0````````>'"VA
M&C,I8````%54421PMAI4-H+D`@)*1'DVTLP@.3:R$@-P`$!@E'141-#9`AXV<
M@N0"`DPP,REPF0```#`85Y#0&D@N$,"8T!I(+B"P"8?D`@&3!;7AWAIGJT%EJ
M(T@N$%"49R/-#))C(RLQX`@``44!,RD``&0I$6:8,;D!``1"05-%!)TMX&$CS
MM**"Y`(%4$Q!0T6THC*3`@(``````&4#H#'2Y@(!9&TN$$"&Y`(%4$Q!0T6'V
M^^'`'YCCT3$J@#."O1\Y-K(2`Y8`('#T)-#9`AXVDF$<F</Q)1YT*N"D`A4`6
M``````````#@I`(5````````````L!(#\.*!Y`(%1E)!345(+D`@%#15A.0"^
8!%1)0TM(+C#`),1T-"JDI?%G'#DVLA(#Q
``
end
END_UU